itecture and Classification of DBMSs

l

H.
JUMP INTO 'IJHEE VING%JORL
OFDATA SEMA GEM#

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ’

SNSave ONY
v NAHYIWAT

I1IN0YE NIANYA

Pri of Database| p c with the i 1
i on to u and apply the fundamental comtpts of Wy
databdse design‘and modeling, database systems; data storage, and the'evolving world
of data warehousmg, governance and more. Designed for those studying datal?se
for or science, this i
textbook has a well-| ba|anced tbeory practice focus and covers the essential tapics,
from d d: ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, anI down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the i b hroughout the text are included to
provide the practical tools to get started in database management.

2T L e

s S AN S

+

=
¥

L
o
=
rm
w
(=
-

KEY FEATURES INCLUDE:

= Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.
An online playground with diverse environments, including MySQL for querying;
MongoDB; Neod4j Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be §
reproduced on the book’s companion online playground. -
Case studies, review questi p and ises in every chapter.

Additional cases, problems and exercises in the appendix.

INIW3IVNVIN 3SVE

Online Resources
www.cambridge.org/

Instructor’s resources
M Solutions manual

M Code and data for examples CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

9"781107"'186125">

ISBN 97
Cover illustration: ©Chen Hanquan / DigitalVision / Getty Images.
Cover design: Andrew Ward

www.pdbmbook o |

http://www.pdbmbook.com/

Introduction

* Architecture of a DBMS
e Categorization of DBMSs

Architecture of a DBMS

DDL statements

Interactive Query

Applications

Database Tools

—
e
e
e

DBMS Interfaces

Connection Manager

Security Manager

DDL compiler

Database utilities

DML compiler

Query parser

Query rewriter

Query optimizer

Query executor

Transaction Manager

Buffer Manager

Lock Manager

Recovery Manager

DBMS

Query
processor

Storage
Manager

8

s g

‘rawdata indices catalogl Database

Architecture of a DBMS

Connection and Security Manager
DDL Compiler

Query Processor

Storage Manager

DBMS Utilities

DBMS Interfaces

Connection and Security Manager

 Connection manager provides facilities to setup a
database connection (locally or through a network)

— verifies logon credentials and returns a connection
handle

— database connection can either run as single process or
as thread within a process

e Security manager verifies whether a user has the
right privileges

— read versus write access

DDL Compiler

Compiles the data definitions specified in DDL
ldeally 3 DDLs (internal/logical/external data model)

DDL compiler first parses the DDL definitions and checks
their syntactical correctness

DDL compiler then translates the data definitions to an
internal format and generates errors if required

Upon successful compilation, DDL compiler registers the
data definitions in the catalog

Query processor

* Query processor assists in the execution of
database queries such as retrieval, insertion,
update or removal of data

* Key components:
— DML compiler
— Query parser
— Query rewriter
— Query optimizer
— Query executor

DML Compiler

* DML compiler compiles the DML statements

* Procedural DML

— DML explicitly specifies how to navigate in the database
— record-at-a-time DML
— NO query processor

e Declarative DML

— DML specifies what data should be retrieved or what
changes should be made

— set-at-a-time DML
— query processor

DML Compiler

import java.sql.*;

public class JDBCExamplel {

public static void main(String[] args) {

try {

System.out.println("Loading JDBC driver...");
Class.forName("com.mysql.jdbc.Driver");
System.out.println("JDBC driver loaded!");

} catch (ClassNotFoundException e) {

throw new RuntimeException(e);

}

String url =
"jdbc:mysql://localhost:3306/employeeschema™;
String username = "root";

String password = "mypasswordl23";

String query = "select E.Name, D.DName" +

"from employee E, department D" +
"where E.DNR=D.DNR;";

Connection connection = null;
Statement stmt=null;

try {
System.out.println("Connecting to database");

connection = DriverManager.getConnection(url,
username, password);

System.out.println("MySQL Database connected!");
stmt = connection.createStatement();

ResultSet rs = stmt.executeQuery(query);

while (rs.next()) {
System.out.print(rs.getString(1));
System.out.print(" ");
System.out.println(rs.getString(2));

}

stmt.close();

} catch (SQLException e) {
System.out.println(e.toString());

} finally {

System.out.println("Closing the connection.™);
if (connection != null) {

try {

connection.close();

} catch (SQLException ignore) {}}}}

DML Compiler

* Impedance mismatch problem

—mapping between OO (e.g. Java) and relational
(e.g. SQL) concepts

* Impedance mismatch solutions

—host language and DBMS with comparable data
structures (e.g., Java and OODBMS)

—middleware to map the data structures from the
DBMS to the host language and vice versa

DML Compiler

Java

public class Employee {
private int EmployeelD;

private String Name; SQL

private String Gender;

private int DNR; CREATE TABLE Employee (
"EmployeeID' INT NOT NULL,

lic i Empl ID

ig:uiﬁ E;EliizeTg.Oyee O A <: :> ‘Name' VARCHAR(45) NULL,

} ’ "Gender' VARCHAR(45) NULL,

public void setEmployeeID(int id) { "'DNR* INT NULL)

this.EmployeelID = id;

} EmployeelD | Name Gender | DNR

public String getName() { 100 Bart Baesens Male 2

return Name;

} 110 Wilfried Lemahieu Male 4

public void setName(String name) { 120 Seppe vanden Broucke | Male 6

this.Name = name;

}

.}

DML Compiler

* DML compiler starts by extracting the DML
statements from the host language.

* DML compiler then collaborates with the query
parser, query rewriter, query optimizer, and query
executor for executing the DML statements

* Errors are generated and reported if necessary

Query Parser and Query Rewriter

* Query parser parses the query into an internal
representation format

* Query parser checks the query for syntactical and
semantical correctness

* Query rewriter optimizes the query, independently
of the current database state

Query Optimizer

Query optimizer optimizes the query based upon the
current database state (based upon e.g. predefined
indexes)

Query optimizer comes up with various query execution
plans and evaluates their cost in terms of estimated

— number of 1/O operations

— CPU processing cost

— execution time

Estimates based on catalog information combined with
statistical inference

Query optimizer is a key competitive asset of a DBMS

Query executor

* Result of the query optimization is a final
execution plan

* Query executor takes care of the actual execution
by calling on the storage manager to retrieve the
data requested

Storage manager

e Storage manager governs physical file access and
supervises the correct and efficient storage of data

e Storage manager consists of
— transaction manager
— buffer manager
— lock manager
— recovery manager

Transaction manager

Transaction manager supervises execution of database
transactions

— a database transaction is a sequence of read/write operations
considered to be an atomic unit

Transaction manager creates a schedule with interleaved
read/write operations

Transaction manager guarantees ACID properties

COMMIT a transaction upon successful execution and
ROLLBACK a transaction upon unsuccessful execution

Buffer Manager

Buffer manager manages buffer memory of the DBMS
Buffer manager intelligently caches data in the buffer

Example strategies:
— Data locality: data recently retrieved is likely to be retrieved again

— 20/80 law: 80% of the transactions read or write only 20% of the
data

Buffer manager needs to adopt smart replacement strategy
in case buffer is full

Buffer manager needs to interact with lock manager

Lock Manager

Lock manager provides concurrency control
which ensures data integrity at all times

Two types of locks: read and write locks

Lock manager is responsible for assigning,
releasing, and recording locks in the catalog

Lock manager makes use of a locking
protocol which describes the locking rules,
and a lock table with the lock information

Recovery Manager

* Recovery manager supervises the correct
execution of database transactions

* Recovery manager keeps track of all database
operations in a log file

* Recovery manager will be called upon to undo
actions of aborted transactions or during crash
recovery

DBMS Utilities

Loading utility
Reorganization utility
Performance monitoring utilities

User management utilities
Backup and recovery utility

DBMS Interfaces

Web-based interface

Stand-alone query language interface
Command line interface
Forms-based interface

Graphical user interface

Natural language interface

Admin interface

Network interface

DBMS |

nterfaces

ﬁ MySQLConnection X

File Edit View Query Database Server Tools
g il e dEEEL @
Navigator:

MANAGEMENT

© server status NaVIQator .
4 Client Connections WlndOW

1 Users and Privileges
12 status and System Variables
X, Data Export

L Data Import/Restore

INSTANCE
H startup / Shutdown
A Server Logs
J” Options File

PERFORMANCE
& Dashboard
&) Performance Reports
&\ Performance Schema Setup

SCHEMAS L

Q |Filter objects

¥ | purchaseadmin ~
v B Tables

» = po_line

product

purchase_order

& supplier

» E supplies

B views

Tﬁ Stored Procedures v

Information

Object Info Session

Scripting Help

@ Ll

SQLAdditions

Query window

@ e ¥ 8 |8 @ | umtto 1000rows ~ | 45 | € Q (1) (3
18 Select * from product;
2
3
4
<
Result Grid | 1 43 Fiter Rowss: | edt: g Eik | Export/Import: Efg &) | Wrap Cell Content: TE
PRODNR PRODNAME PRODTYPE AVAILABLETQUANTITY
p 0119 Chateau Miraval, Cotes de Provence Rose, 2015 rose 126
0154 Chateau Haut Brion, 2008 red 111
0178 Meerdael, Methode Traditionnelle Chardonnay, 2014 sparkling 136
0185 Chateau Petrus, 1975 red 5
0199 Jacques Selosse, Brut Initial, 2012 sparkling 9%
0212 Billecart-Salmon, Brut Réserve, 2014 sparkling 141
Anen bl Pioie Fieeee A040 =g A
product 1 x
Output
[Action Output -
Time Action Message
© 1 220715 Select *from product LIMIT 0, 1000 42 row(s) retumed

Log window

Results
window

111 :ﬂ? Jump to
>
~
Form
Editor
v
Rever Context Help Snippets

Duration / Fetch

0.000 sec / 0.000 se

23

Categorization of DBMSs

Categorization based on data model

Categorization based on degree of simultaneous
access

Categorization based on architecture
Categorization based on usage

Categorization based on data model

 Hierarchical DBMSs

— adopt a tree like data model
— DML is procedural and record oriented
— no query processor (logical and internal data model intertwined)
— E.g., IMS (IBM)
* Network DBMSs
— use a network data model
— CODASYL DBMSs
— DML is procedural and record oriented
— no query processor (logical and internal data model intertwined)
— CA-IDMS (Computer Associates)

Categorization based on data model

 Relational DBMSs

— use the relational data model

— currently the most popular in industry
— SQL (declarative and set oriented)

— query processor

— strict separation between the logical and internal data
model

— E.g., MySQL (open source, Oracle), Oracle DBMS
(Oracle), DB2 (IBM), Microsoft SQL (Microsoft)

Categorization based on data model

* Object-Oriented DBMSs (OODBMS)

— based upon the OO data model

— No impedance mismatch in combination with OO host
language

— E.g., db4o (open source, Versant), Caché (Intersystems)
GemStone/S (GemTalk Systems)

— only successfull in niche markets, due to their
complexity

Categorization based on data model

* Object-Relational DBMSs (ORDBMSs)

— also referred to as extended relational DBMSs
(ERDBMSs)

— use a relational model extended with OO concepts
— DML is SQL (declarative and set oriented)

— E.g., Oracle DBMS (Oracle), DB2 (IBM), Microsoft SQL
(Microsoft)

Categorization based on data model

* XML DBMSs

— use the XML data model to store data

— Native XML DBMSs (e.g., BaseX, eXist) map the tree
structure of an XML document to a physical storage
structure

— XML-enabled DBMSs (e.g., Oracle, IBM DB2) are
existing DBMSs that are extended with facilities to
store XML data

Categorization based on data model

* NoSQL DBMSs

— targeted at storing big and unstructured data

— can be classified into key-value stores, column-oriented
databases and graph databases

— focus on scalability and the ability to cope with
irregular or highly volatile data structures

— E.g., Apache Hadoop, MongoDB, Neo4j

Categorization based upon degree of simultaneous access

* Single user versus multi user systems

incoming
connections

dispatcher

\‘ server
instance 1 \

\.f server
instance 2 / database

server
instance 3

Categorization based on architecture

e Centralized DBMS architecture

— data is maintained on a centralized server

 Client server DBMS architecture

— active clients request services from passive servers

— fat server versus fat client variant

 n-tier DBMS architecture

— client with GUI functionality, app
applications, database server wit
database, and web server for we

ication server with
n DBMS and

0 based access

Categorization based on architecture

 Cloud DBMS architecture

— DBMS and database are hosted by a third-party cloud
provider

— E.g., Apache Cassandra project and Google’s BigTable
* Federated DBMS

— provides a uniform interface to multiple underlying
data sources

— hides the underlying storage details to facilitate data
access

Categorization based on architecture

* in-memory DBMS

— stores all data in internal memory instead of slower
external storage (e.g., disk)

— often used for real-time purposes
— E.g., HANA (SAP)

Categorization based on usage

* On-line transaction processing (OLTP)
— focus on managing operational or transactional data

— database server must be able to process lots of simple transactions
per unit of time

— DBMS must have good support for processing a high volume of short,
simple queries
* On-line analytical processing (OLAP)

— focus on using operational data for tactical or strategical decision
making

— limited number of users formulates complex queries

— DBMS should support efficient processing of complex queries which
often come in smaller volumes

Categorization based on usage

* Big Data & Analytics
— NoSQL databases

— focus on more flexible, or even schema-less, database
structures

— store unstructured information such as emails, text
documents, Twitter tweets, Facebook posts, etc.

* Multimedia

— Multimedia DBMSs provide storage of multimedia data
such as text, images, audio, video, 3D games, etc.

— should also provide content-based query facilities

Categorization Based on Usage

* Spatial applications

— spatial DBMSs support storage and querying of spatial
data (both 2D and 3D)

— Geographical Information Systems (GIS)

* Sensoring

— sensor DBMSs manage sensor data such as biometric
data from wearables, or telematics data

Categorization based on usage

e Mobile

— Mobile DBMSs run on smartphones, tablets or other mobile
devices.

— should always be online, have a small footprint and be able to
deal with limited processing power, storage and battery life

* Open source

— code of open source DBMSs is publicly available and can be
extended by anyone

— See www.sourceforge.net
— E.g., MySQL (Oracle)

http://www.sourceforge.net/

Conclusions

* Architecture of a DBMS
e Categorization of DBMSs

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

